International Journal of Marine Energy 14 (2016) 27-40

Contents lists available at ScienceDirect

International Journal of Marine Energy

[ INTERNATIONAL JOURNAL OF
MARINE ENERGY

journal homepage: www.elsevier.com/locate/ijome ”'—" ==

Characterizing biological impacts at marine renewable energy @CmssMark
sites

Lauren E. Wiesebron **, John K. Horne?, A. Noble Hendrix "

2 University of Washington, School of Aquatic and Fishery Sciences, Box 355020, Seattle, WA 98195, USA
b QEDA Consulting, LLC 4007 Densmore Ave N, Seattle, WA 98103, USA

ARTICLE INFO ABSTRACT
ArtiC{e history: Tidal energy is a renewable resource that can help meet growing energy demands, but
Received 9 November 2015 uncertainties remain about potential environmental impacts of device installation and

Revised 29 January 2016
Accepted 1 April 2016
Available online 1 April 2016

operation. Environmental monitoring programs are used to detect impacts and are a
mandatory requirement of project operating licenses in the United States. Because tidal
technology is new, studies describing environmental change due to tidal devices are rare,
limiting information that can be used to characterize environmental impacts for monitor-

Iéi{:!ﬁ:gs\;alue ing requirements. Extreme Value Analysis (EVA) was used to characterize infrequent values
Impact from monitoring studies that are potentially associated with impact, defined as relevant
Biological monitoring biological change: as a consequence qf hurpan activity, at a tidal energy sit.e. EVA was
Marine renewable energy adapted for monitoring aquatic organisms in the water column using an active acoustic
Hydroacoustics dataset from Admiralty Inlet, a proposed tidal energy site. First derivatives were used to

identify extreme value thresholds to improve precision of EVA parameters. Return level
plots, which indicate the average period that extreme values are expected to appear, and
uncertainty estimates of return level predictions, were generated using Markov Chain
Monte Carlo (MCMC) simulations. Managers and site developers could use EVA to charac-
terize rare values that may be associated with impacts, and tailor monitoring programs to
include operational protocols for conditions under which these events occur.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global interest in renewable energy continues to increase due to rising energy demand and environmental concerns. The
ocean provides renewable energy resources, in the form of wind, geothermal, and marine hydrokinetic energy [1]. Interest in
developing tidal energy projects is growing because tides are a constant and predictable energy source [2]. While marine
renewable energy (MRE) is an attractive alternate energy, implementing MRE technology includes uncertainty about how
the technology will affect both biological and physical components of the environment [1,3,4]. To quantify and minimize
impacts of MRE technologies, environmental monitoring programs are conducted at all sites through the life of a project.

Biological components of monitoring programs focus on the detection of change in variables such as diversity, length
composition, or abundance of monitored species [5]. A successful biological monitoring program provides data that will help
developers and regulators make informed decisions on adaptive management options [6]. To achieve this goal, it is essential
that monitoring detects changes that are biologically relevant. These changes have been described as “effects” or “impacts”.
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Stewart-Oaten and Bence [7] define an “effect” on abundance as the “difference between the abundance at a site after an
alteration and the abundance a site would have if the alteration had not occurred”. An environmental impact can be
distinguished from an effect by measuring “severity, intensity, or duration of the effect, and also the direction (positive or
negative) of the effect” [8]. To detect an impact, baseline data (i.e. data collected before alteration began [7]) must be
collected to facilitate comparison after devices are installed and become operational [9]. Determining the maximum level
of “acceptable” impact is a high priority when forming a monitoring plan [10]. Observed values above a threshold can deter-
mine if a tidal project is allowed to continue operating [11]. Thus it is imperative that setting thresholds and characterizing
impacts should be completed before MRE operations and concurrent monitoring begins [12].

At this time, there are no regulations for MRE monitoring procedures, technologies, or metrics for monitoring programs
[13]. Monitoring programs are developed prior to the application for an operating license, and the amount of time to develop
a monitoring plan that is acceptable to regulators can delay a developer’s submission of the license application, adding cost
and temporal uncertainty to permitting (e.g. [14]).

During monitoring plan development, characterizations of environmental impacts are often derived from preliminary
samples or prior monitoring observations at analogous sites [15]. Because tidal technology is relatively new, studies describ-
ing environmental change due to tidal devices are scarce, restricting the information available to inform monitoring
programs [2]. To set thresholds for biological monitoring at tidal energy sites, regulators can either estimate thresholds,
or use models to characterize change.

Extreme Value Analysis (EVA) is an approach used to model values that are infrequent but are potentially associated with
impacts caused by large change [16]. Although commonly used in engineering and hydrology [17,18], EVA has rarely been
applied to ecological problems. EVA can be used in environmental monitoring to target rare but potentially significant
events. These events are expected to be important to MRE regulators as there may be long-lasting consequences for both
the ecosystem and tidal devices. Examples of this type of impact would include a collision between a marine mammal
and a device, or altering fish migration patterns. This study evaluates whether EVA can be used to characterize infrequent
values that are potentially associated with biological impacts at a tidal energy site.

2. Methods
2.1. Study site description

Admiralty Inlet is the proposed site of the Snohomish Public Utility District 1 (SnoPUD) tidal energy pilot project that
received its project license from FERC on March 20th, 2014. The site is tidally dynamic, with an average tidal current speed
of 1.4 ms~! and maximum speeds reaching almost 3 ms~!. Environmental concerns at the site include potential impacts on
commercially important fish species and southern resident killer whales which are an iconic species in Washington State
[19]. The proposed project, now dormant, would deploy two OpenHydro turbines (http://www.openhydro.com/) approxi-
mately one kilometer west of Whidbey Island. Two sub-sea power cables would connect the turbines to the onshore electric
grid (Public Utility District No. 1 of Snohomish County, 2012).

Acoustic backscatter (i.e. reflected energy) data were recorded using an upward looking, bottom mounted BioSonics DTX
echosounder (http://www.biosonicsinc.com/) operating at 120 kHz from May 9th until June 9th, 2011 [20]. The echosounder
was placed at 55 m depth about 750 m off Admiralty Head at the SnoPUD tidal turbine site (Fig. 1). The echosounder sampled
at 5 Hz for 12 min every 2 h. Because of a 3rd surface echo, data values were constrained to 25 m from the bottom. A —75 dB
re 1 m~! threshold was applied to remove noise [20]. Data were binned into 12 min samples and vertically integrated,
yielding 361 datapoints [21].

2.2. Biological metrics

Echometrics are a suite of indices that quantify the variability of vertical biomass in the water column over space and
through time [22]. Among the suite of seven Echometrics developed by Burgos and Horne [23] and refined by Urmy et al.
[22], density and aggregation indices are used to characterize horizontal or vertical changes in biomass distribution, which
could be applied to evaluate interactions between pelagic biomass and MRE devices. For the purpose of this study, high
aggregation and density are assumed associated with high risk of interaction with MRE devices. The density metric is the
mean volume-backscattering strength, or mean Sv (unit: dB re 1 m~! [24] hereafter dB), which is proportional to biomass
density. The aggregation index was used to quantify patchiness with values from O to 1, with 0 being evenly dispersed
and 1 being aggregated.

2.3. Extreme Value Analysis

Extreme Value Analysis [25,16,26] is a statistical technique used to model the probability and periodicity of extreme
values, which are rare values in the tail of a probability distribution. Observed extreme values are used to model extremes
of greater magnitude [16], making this analysis unusual in that it focuses on the tails and not the mean of a sample
distribution.
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Fig. 1. Study location within Puget Sound, Washington (upper right), and location of the acoustic package (left) within the SnoPUD proposed turbine
location.

2.3.1. Peaks-over-threshold (POT)
In the peaks-over-threshold (POT) method, extreme values are identified as exceedances above a threshold. These
exceedances follow a generalized Pareto distribution (GPD) which is given by Pickands [25]:

1 (1+520) i
Gl2) = (1)
1—exp{#} ife=0

where u is the threshold, o is the scale parameter, ¢ is the shape parameter, and ¢ > 0.

The scale parameter determines the steepness of the GPD. The shape parameter determines whether the GPD is bounded.
The sign of the shape parameter determines the behavior of the GPD [16]. If the shape parameter is negative, the GPD is
finite. If positive, then the GPD can continue to infinity. To perform a POT analysis, first a threshold (u) is selected, then
the scale (0) and shape (&) parameters are fit to the data to model extreme values.

2.3.2. Identifying the extreme value threshold

Selecting the threshold for fitting the GPD to a frequency distribution is an important but difficult step in applying the
POT method. If the threshold is too low then the model will be biased by including observations from the middle of the
frequency distribution. If the threshold is too high then the model will be fit to too few data points and the variance of
the GPD parameter estimates will increase [27,28]. The ideal threshold is the lowest value that includes as many excesses
as possible, while still meeting the statistical assumptions of the GPD.

The threshold is usually defined visually [29] using mean residual life (MRL) plots and parameter stability plots. An MRL
plot shows the mean number of values above a threshold as the threshold value is increased. If a GPD is valid for excesses at a
threshold uy, it should also be valid for thresholds u > up, with the scale parameter adjusted to the threshold u [16]. So E
(X —u|X>u)is a linear function of u, and the mean excesses change linearly with u at values of u for which the GPD is
appropriate. The optimal GPD threshold is identified as the value where the MRL curve becomes linear. In contrast, the
parameter stability plot shows the fit of the GPD scale or shape parameters for successive thresholds. The rationale for this
method is that the shape ¢ and adjusted scale parameter ¢*, with ¢* = ¢, — ¢ u, should be constant above ug, if ug is a valid
threshold for the GPD [16]. In a parameter stability plot, the threshold is identified as the value where parameter estimates
become stable, or near-constant. The adjusted scale and shape parameter plots are often complements of each other, so
visual diagnostics on only one is necessary.

Interpretation of MRL and parameter stability plots is challenging. Since the MRL plot is rarely smooth, it is difficult to
decide where linearity is achieved. Interpretation of the parameter stability plot is a little easier, but in both cases the choice
of threshold is subjective [30,31].

An objective and automated way of selecting a threshold for extreme values is to take the derivative of the threshold
diagnostic plots, and identify the value where the derivative first equals zero. Plot functions are smoothed to remove local
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variability using a polynomial kernel density smoother [32], implemented using the KernSmooth package in R [33]. Deriva-
tives are then calculated for the smoothed functions, and the inflexion point corresponding to the best threshold estimate
from each plot is identified.

To evaluate how dependent the threshold value is on the proportion of data used, thresholds were calculated for random
subsets of the Admiralty Inlet mean Sv and aggregation index data. Derivatives were first calculated for an MRL plot of the
full dataset (n=361), and then were calculated on random subsets with the sample size for each set decreasing by one
datapoint at a time. A threshold value was obtained for 350 (n = 360 to n = 11, below which a threshold was not identifiable)
subsets of Admiralty Inlet data, for both mean Sv and aggregation index metrics.

2.3.3. Fitting the GPD using Bayesian methods
2.3.3.1. Applying Bayesian theory to POT. While the most widespread method for fitting model parameters is maximum
likelihood estimation (MLE), we performed a POT analysis using Bayesian inference.

Bayes theorem can be summarized as:

L(0|data) x P(0)

P(0|data) = =5 (data) (2)

where P(f|data) is a probability distribution for an unknown variable. L(0|data) is the likelihood of the variable taking on a
value given the data, in this case, the value of the scale or shape parameter, P(0) is the prior, and P(data) is the sum of all the
possible ways of observing the data. The primary difference between MLE and Bayesian methods is that MLE uses estimate
maximization whereas Bayesian analysis uses integration. The Bayesian method will result in a more conservative evalua-
tion of risk since it takes into account parameter uncertainty by integrating over all probable values. A conservative estimate
of parameter uncertainty is appropriate for MRE monitoring to ensure that the range of outcomes is not underestimated. As
posterior distributions are analytically challenging to compute, they are typically simulated numerically. To obtain the
posterior distribution for the GPD scale ¢ and shape ¢ parameters, a Markov Chain Monte Carlo (MCMC) simulation [34]
was used (see below).

A Bayesian analysis includes a prior, which is information on the probability distribution of parameter values, formed
without knowledge or previous experience with the sample data. The use of prior information needs to be justified as it influ-
ences the posterior distribution. For this study, the use of an informative prior could not be justified as there is a dearth of
information on biotic distributions at tidally dynamic sites. Uninformative or flat priors for the scale and shape parameters
were used. These priors were centered at 0 and have high variance to ensure that no bias was introduced to the posterior
parameter distributions: o ~ N(0,1000); ¢ ~ N(0,100).

2.3.3.2. MCMC application. The MCMC method used for this study was a Metropolis-Hastings sampler. The negative
log-likelihood (NLL) for the GPD is given by [16]:

NLL(u,O',s;x)——{—nlogJ— (l—&-%)lz;:log {1-%—8@}} (3)

where u is the threshold, ¢ is the scale parameter, ¢ is the shape parameter, x is the data, n is the number of values in the
dataset.

As is customary in MCMC simulations, the first 20% of the chains’ accepted draws were discarded as a burn-in period, and
then chains were thinned according to the autocorrelation between chain draws [35]. To obtain thinned chains with the
same number of draws for both indices (64,000 draws), the starting MCMC chains for the aggregation index were twice
as long (4,000,000) as chains for mean Sv (2,000,000). The autocorrelation between aggregation index draws was twice as
strong as that for mean Sv values. Two tests, Geweke [36] and Gelman-Rubin [37] were performed on six chains, starting
with different pairs of initial values to ensure that the MCMC chain was converging on the same posterior distribution.

Posterior distributions for the GPD scale and shape parameters were produced for both mean Sv and the aggregation
index. MCMC jump size (Table 1) was iteratively selected to obtain a well-mixed chain (30-40% draws accepted) [35].

2.3.3.3. GPD parameter sensitivity to threshold value. Because the threshold determines what portion of the data is fit to the
GPD, it is important to examine the sensitivity of the GPD scale and shape parameter estimates. Simulated datasets were
generated following GPD distributions with known threshold (for all simulations, the true threshold had a value of 20), scale,
and shape parameters. The MCMC routine was then used to fit the scale and shape parameters while increasing the threshold
value by increments of 0.1 units until it reached a value of 22. The simulations were run on two datasets with the scale and

Table 1

MCMC parameter values for mean Sv and aggregation index simulations.
Metric Scale jump size Shape jump size % draws accepted % draws out of bounds Chain length Thinning interval
Mean Sv 1.54 0.42 35 5 2,000,000 25

Aggregation index 0.18 0.46 36 21 4,000,000 50
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shape combinations from the median mean Sv and aggregation index parameter posteriors. For both parameter combina-
tions, 18 separate simulations were run. The mean of these simulations were used to evaluate the sensitivity of the GPD scale
and shape parameters to the threshold.

2.3.4. Return level

While it is informative to examine values of location, shape, and scale parameters of the fitted GPD, further insight can be
gained from examining return levels. The value g, is the return level associated with the return period 1/p, and is the value
that is expected to be exceeded on average once every 1/p time units [27]. Return levels for data exceedances are generated
by inversing the GPD cumulative density function (Eq. (1)). For an arbitrary probability p, the corresponding return level gj, is
[27]:

g =u+ (1) 4)

where u is the threshold, o is the scale parameter, ¢ is the shape parameter, g, is the return level, and p is the return level
probability.

Return levels g, were plotted as a function of return periods 1/p, to obtains a return level plot that shows the expected
periodicity for data excesses and values extrapolated beyond the range of the sampled data.

2.3.5. Bivariate peaks-over-threshold analysis

The bivariate POT method fits the GPD to two variables as a joint process. This method can be used to examine the
correlation of processes underlying extreme values. While multivariate extreme value theory is well-developed, model com-
putation and validation are challenging due to greater independence between high-level extreme event processes [16]. There
are several methods to obtain a bivariate model, including a logistic model, a bilogistic model, or an asymmetric logistic
model. The logistic model was chosen over the bilogistic model and the asymmetric logistic model through an analysis of
deviance, which was possible because the models were nested. The logistic model is given by:

Gx,y)=x "V +y V" 0<a<1 (5)
where x and y are the fitted univariate GPDs for the x and y variables [16] and « is the correlation between the two variables.
Independence between the two variables is obtained when o = 1, and inversely, dependence is obtained when « approaches
0. Results of the bivariate analysis are GPD scale and shape parameter estimates for x, y, and an « estimate that indicates the
dependence between x and y variables. In this study, following Segers and Vanderwalle [38], a single threshold value for
the bivariate distribution was found so that the same number of mean Sv and aggregation index observations were above
the threshold. The logistic bivariate model was fitted to mean Sv and the aggregation index using a maximum likelihood
estimation (MLE) function provided by the evd R package [39].

3. Results
3.1. Threshold estimation

3.1.1. Mean Sv threshold diagnostics

Visual interpretation of diagnostic plots resulted in a preliminary threshold estimate. The mean residual life plot is
approximately linear between u ~ —75 dB and u ~ —71 dB (Fig. 2a). While it may appear that linearity is not achieved until
u ~ —69 dB, there are only 6 datapoints above —69 dB which increases uncertainty of an estimate. Patterns in the shape
parameter stability plot (Fig. 2b) mimic those of the mean residual life plot (Fig. 2a). The shape parameter appears to be
stable until about u ~ —75 dB, which is also the value where variance sharply increases. After u ~ —71 dB, the sharp increase
in variance indicates that there are too few values to estimate parameter stability.

To obtain a more precise estimate of the threshold, the derivative method was applied to mean Sv data (Fig. 2). After
smoothing both the MRL (Fig. 2a) and parameter stability plots (Fig. 2b), and taking the derivative (Fig 2c, d), the first point
where dY = 0 for the parameter stability plot is u = —74.48 dB, and for the mean residual life plot u = —74.58 dB. These values
are very close and are consistent with the visual diagnostics (Fig. 2a, b). The threshold for the POT analysis was set to the
average of the two values from the derivative plots, which is u = —74.53 dB. A threshold of u = —74.53 dB results in 90 excee-
dances, which is 25% of the data (Fig. 3).

3.1.2. Aggregation index threshold diagnostics

Diagnostic plots for the aggregation index metric (Fig. 4) differed from the mean Sv threshold diagnostic graphs. The
mean residual life plot (Fig. 4a) increased rapidly until about u ~ 0.14 m~!, where variance increased and the plot became
approximately linear. The linear trend is more visible in the scale parameter stability plot (Fig. 4b), where the shape param-
eter estimate decreased from u ~ 0.05 m~' to u~ 0.15 m~', then it remained constant until u ~ 0.2 m~! where the variance
increased steadily.

A threshold estimate was obtained using the derivative method for each plot. The threshold value from the mean residual
life plot derivative was u=0.135m . The first value where dY =0 for the derivative of the parameter stability plot was
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Fig. 2. The mean residual life plot (a) and scale parameter stability plot (b) with the black line representing the smoothed plots, the corresponding
derivatives (c and d) of the smoothed plots, with the black line showing dY = 0 for mean Sv.
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Fig. 3. Histogram of mean Sv values with the threshold marked at —74.53 dB (dotted line) and GPD fit (solid line). The scale and shape parameter values
were obtained from posterior medians.

u=0.05 m~!, but this value did not stabilize in the shape parameter estimate, which is illustrated by the amplitude of values
around this point. The threshold from the parameter stability plot was set to u = 0.146 m~!, the second inflexion point in the
derivative plot, as it also matched the result from the MRL plot (Fig. 4c). The average of the threshold estimates from the MRL
and parameter stability plots is 0.140 m~'. As with mean Sv, this value is consistent with visual interpretation of the mean
residual life and parameter stability plots. A threshold of 0.140 m~! results in 26 exceedances for the aggregation index,
which is 7% of the data (Fig. 5).
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values were obtained from posterior medians.

3.1.3. Threshold robustness

The robustness of the derivative analysis was examined by calculating thresholds for subsets of data of decreasing size.
For both the mean Sv and aggregation indices, reduction in the sample size affected the threshold estimate (Fig. 6). The
threshold for mean Sv remains stable until about n = 110, where the estimated threshold starts to decrease with sample size.
The threshold for the aggregation index becomes unstable at a sample size of approximately n = 235. The aggregation index
threshold is more dependent on sample size as 7% of the data are considered extreme compared to 25% of the mean Sv data.



34 L.E. Wiesebron et al./ International Journal of Marine Energy 14 (2016) 27-40

-750
|

mean Sv
-80.0
1

®)

0.200
I

0.150

0.100

aggregation index
L

T T T T T T T T T T T T T T T
360 335 310 285 260 235 210 185 160 135 110 85 60 35 10

sample size

0.050
|

Fig. 6. Threshold estimates from the derivative method plotted against data sample size for (a) mean Sv (b) aggregation index.

In both cases, the estimated threshold is considered robust as the threshold estimate does not immediately change with
decreasing sample size.

3.2. Bayesian analysis

3.2.1. Shape and scale posteriors

The first objective of the Bayesian analysis was to estimate posterior distributions for the GPD scale and shape parameters
using the MCMC method. The scale and shape posterior distributions for both mean Sv and aggregation index metrics show a
slight right-skew (Fig. 7). The median for the mean Sv scale and shape parameters are respectively 2.14 and 0.07, the median
for the aggregation index scale and shape parameters are 0.19 and —0.26.

The aggregation index shape parameter posterior distribution has a larger range (—1 to 1) and larger tails compared to the
mean Sv shape parameter posterior distribution (range: —0.2 to 1) (Table 2). The greater 95% credible interval range is attrib-
uted to the smaller number of points above the aggregation index threshold compared to the mean Sv threshold. The range
(-1 to 1) of the shape parameter for both variables contained positive and negative values. There is a 0.27 probability that
the mean Sv shape will be negative, and a 0.87 probability that the aggregation shape will be negative. The sign of the shape
parameter will affect the shape of return level predictions (i.e. positive shape will result in infinite return levels, whereas a
negative shape will lead to finite return levels).

3.2.2. MCMC diagnostics

3.2.2.1. Convergence. Three diagnostics were computed for the MCMC chains to verify that they converged to stationary dis-
tributions. The first diagnostic was to start multiple chains from different pairs of scale and shape values to ensure that they
converged at the same posterior distribution. Six chains of a million draws, which had a range of starting values (scale: 0 to
15, shape: —2 to 2), converged to the same stationary distribution. The Gelman-Rubin test resulted in point estimates of the
potential scale reduction factors that were equal to 1, indicating that convergence had been achieved. The Geweke test
resulted in Z-scores that were between —2 and 2 indicating that the first 10% were not significantly different from the last
50% of the scale and shape chains. Collectively, these tests confirmed that the chain was converging to a single stationary
distribution.

3.2.2.2. MCMC sensitivity to threshold value. The sensitivity of the GPD scale and shape estimates to the threshold value was
examined. MCMC simulations performed on simulated GPD data with known scale and shape parameters returned consis-
tent scale and shape parameters when the threshold input was within 0.2 to 1.2 units to the right of the defined threshold
(Fig. 8). These results varied depending on the combinations of scale and shape parameters in the simulated data. In all cases,
the MCMC algorithm was unable to fit the true scale and shape parameters once the threshold value deviated greater than
1.2 units from the defined threshold.
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Table 2

Median parameter values and the 95% credible interval in parentheses (lower, upper bounds).
Metric Scale Shape
Mean Sv 2.147 (1.541, 2.913) 0.071 (-0.129, 0.378)
Aggregation index 0.191 (0.114, 0.319) —0.264 (-0.619, 0.257)

3.2.3. Return levels

Using the GPD parameter posteriors, return level plots with credible intervals were generated to examine how the return
period changes as extreme values increased. The median mean Sv return level steadily increased as the return period
increased, reaching —40 dB every 10 years (Fig. 9a).

The aggregation index return level exhibited a different behavior than that of mean Sv. The aggregation index median
return level increased slowly until it reached about 0.75m™! at 1year, and then increased exponentially, reaching an
asymptote at 0.75 m~! (Fig. 9b). The aggregation index credible intervals increased at a greater rate than the intervals for
mean Sv, with the upper quantile slopes rapidly increasing after a 1 day return period.

3.3. Bivariate peaks-over-threshold

The logistic model for the bivariate POT analysis was fitted to the mean Sv and aggregation index data to examine
whether additional information was provided by modeling the two variables as a joint process. The bivariate threshold
for mean Sv was —75.3 dB and for aggregation index was 0.058 m~!, which are both lower than the univariate thresholds
and result in 115 exceedances or 32% of the data being fit to the bivariate model. There were 39 data points jointly above
the mean Sv and aggregation index thresholds. The a-value is 0.95 suggesting weak correlation, and almost independent
variables. MLE estimates for the bivariate model are different than the median univariate values estimated by Bayesian
inference (Table 3). The difference between the univariate and bivariate parameter estimates (Table 4) is greater for the
aggregation index than for mean Sv, which is reflected in the large discrepancy between the univariate and bivariate
aggregation index return level curves (Fig 9c, d).

Return levels for mean Sv (Table 3) in the bivariate case are lower than in the univariate case. This is an expected result as
high aggregation and densities rarely occur at the same time, and joint events are predicted to occur less frequently than
single events. The aggregation index bivariate return levels start lower than the univariate, but quickly exceed them for
return periods greater than a day. The shape of the aggregation index bivariate return level is attributed to the threshold
value of the bivariate model being lower than that of the univariate model.
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Table 3
Median values and 95% (lower, upper) credible intervals for mean Sv and aggregation index return levels for univariate GPD fit, MLE return level for bivariate
GPD.

Mean Sv Aggregation index
Return period Univariate Bivariate Univariate Bivariate
1 day —68.66 (—71.21, —62.43) —68.86 0.49 (0.29, 1.25) 0.46
1 week —63.32 (—69.28, —40.64) —63.93 0.64 (0.31, 2.79) 0.59
1 month —58.80 (—68.12, —9.68) -59.92 0.71 (0.32, 4.57) 0.64
1 year —49.88 (—66.58, 106.6) -52.31 0.79 (0.32, 9.75) 0.69
5 years —43.23 (—65.82, 267.7) —46.88 0.81(0.32, 15.4) 0.71
10 years —40.13 (—65.54, 374.2) —44.41 0.82 (0.32, 18.7) 0.71

Table 4
Parameter estimates for the bivariate peaks-over-threshold analysis.
Mean Sv Aggregation Index
Scale Shape Scale Shape Alpha
MLE 2.71 —-0.07 0.02 0.89 0.95
Standard error 0.34 0.08 0.05 0.20 0.03

4. Discussion
4.1. Extreme Value Analysis applications for biological monitoring

EVA can be used to establish or refine a monitoring program by providing a way to detect impacts, defined as relevant
biological change caused by human activity, and to model extreme events, defined as observations above a GPD threshold.
Observing values above a threshold or an increase in the frequency of extreme values compared to baseline measurements
could be used to indicate that an impact has occurred. Observations above a threshold are statistically rare and occur when
high-risk events are likely to transpire [16]. Defining a threshold for extreme values can aid MRE managers to assess the risk
of potentially catastrophic events by establishing a baseline for expected extreme value periodicity.

High correlations between extreme events and biological or environmental covariates indicate conditions when high-risk
events may occur, which could be used to increase real-time monitoring effort. For this approach to be successful, it is critical
to define EVA metrics within their biological and physical contexts. For example, observations have shown that turbines act
as fish aggregation devices during slack tides and that these aggregations disperse as current speed increases [40]. Extreme
aggregation events that occur during slack tides when a turbine is not operating probably do not pose a high risk for negative
interactions between marine life and tidal turbines. The aggregation index could be modified to account for tidal state and
calculated during periods of high flow when the turbine is in operation.

EVA could be applied to other environmental data collected for MRE monitoring in addition to the examples used in this
paper. EVA is not limited to high extreme values and could be used to model high or low extremes in physical data relevant
to tidal turbine operation, such as current speed and turbulence.

Threshold estimates are not sample size dependent, but are sample dependent. POT analysis allowed estimation of GPD
threshold values, but the ‘true’ threshold may differ from that determined by the POT threshold analysis, as sample data
must be representative of the true distribution of outcomes. The absence (not occurring or not sampled) of large events
during baseline sampling may result in a threshold value lower than if the full range of events were sampled. For example,
it would be important to include observations of large schools of shoaling fish in the baseline dataset as their presence and
abundance is highly variable [41]. Accuracy of the GPD threshold estimate is increased by sampling the full range of condi-
tions at a MRE site.

There are no generic guidelines for biological monitoring at tidal energy sites in the US, and there are no guidelines for the
temporal sampling resolution or contents of a baseline dataset [13]. Monitoring plans for pilot projects in the US have a wide
range of monitoring methods, objectives, and are site-specific. The Admiralty Inlet baseline dataset was collected continu-
ously for one month. In comparison the baseline data for the Cobscook Bay tidal energy project was collected over nine,
24 hour periods in a year [40]. If impacts are to be detected in a BACI analysis, a baseline dataset must be representative
for comparison to data collected after any environmental alteration has occurred [42]. The Admiralty Inlet and the Cobscook
Bay datasets contain different temporal resolutions and the threshold analysis for the Cobscook Bay dataset may reflect sea-
sonal fluctuations in biomass rather than daily variability. It will be important to determine the appropriate temporal and/or
spatial resolution of baseline sampling, both to establish an accurate GPD threshold and to detect biologically relevant
change once project installation and operation begins.

When using POT, selecting a GPD threshold is a critical and challenging step in the EVA [30]. Besides examining diagnostic
plots, other methods for selecting thresholds have been proposed, but many are computationally intensive or case-specific
[18,29]. In this study, a derivative method is used to establish the threshold. This method utilizes traditional diagnostic plots
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but with greater precision and objectivity compared to visual examination, and with low computation load. For both mean
Sv and aggregation index metrics, values where derivatives equaled zero were similar for both the MRL and parameter sta-
bility plots. Consistency of derivative-based threshold estimates from both plots is interpreted that the derivative method
accurately estimated the GPD threshold.

A bivariate analysis was incorporated in this study because a joint extreme aggregation and density event (e.g. a large and
highly aggregated fish formation in close proximity to the turbine) potentially represents a greater risk for animal interaction
with a tidal turbine device. While a joint return level prediction was determined, the results from this analysis also show that
extreme values of the two metrics were independent, making simultaneous occurrence of a joint extreme density and aggre-
gation event improbable for this dataset. Furthermore, the discrepancy between the proportion of data fit for the univariate
model and the bivariate model was especially large for the aggregation index (7% of data in the univariate case, 31% in the
bivariate case) leading to very different parameter estimates for the two models. The difference in threshold estimates
between the univariate and bivariate cases as well as the near independence of the mean Sv and aggregation index metrics
indicate that the univariate models should be used instead of the bivariate models for this dataset.

Multivariate extremes can be used to model highly correlated processes (e.g. wind, wave amplitude, and current fluxes
[43]), and the potential spatial autocorrelation among variables [44]. A multivariate model may be informative if additional
data confirms a correlation between biomass density and aggregation, or if correlations exist between extremes of other
metrics. A multivariate model could also be used to examine spatial variability of metric values if multiple datasets are col-
lected at a site.

The rapid expansion of credible intervals for return levels of both mean Sv and aggregation index metrics is attributed to
sample size. Data were only collected for one month, which increases the uncertainty in return levels for larger return
periods [16]. The spread of the 95% credible intervals around return levels shows that return level predictions are uncertain,
even at small return periods. This wide range of return level credible intervals is partially due to the conservative uncertainty
estimate from the Bayesian computation. Uncertainty could be decreased by collecting baseline data over a longer period,
but this may be impractical as data collection surveys are expensive [45]. Baseline surveys could also be supplemented
by data collected during project operations; with return levels estimated separately and used to inform project managers
about conditions under which increased monitoring may result in extreme events. This approach is useful during ongoing
monitoring programs, as more data will increase accuracy of GPD parameter estimates, which in turn, should decrease return
level uncertainty.

Return levels must be interpreted with caution. The aggregation index return levels are bounded by the values of
0.14m~'and 1 m~!, which is the largest possible aggregation index value. Most of the calculated upper 95% credible interval
bounds exceed the upper bounds for the metric (Table 3). Exceeding the upper bound occurs because a positive shape
parameter makes the GPD infinite. For metrics that are bounded, values that exceed bound limits could be replaced by
the true metric bounds (e.g. 1 m™! for aggregation index). For metrics that are unbounded, such as mean Sv, return levels
could be constrained to biologically reasonable values. An alternate approach would be to transform values of the dependent
variable, and then use the inverse of the transformation to obtain return level values.

Parameter uncertainty could potentially be reduced by performing an MCMC analysis using informative priors. Informa-
tive priors have been used in impact detection studies (e.g. [46-48]), and can be formed by soliciting expert opinion on the
effects of and relationship to a disturbance. To obtain a prior for a GPD, experts are asked the median and 90% quantile
estimates (e.g. high density values) for specific return levels (see [27] for more detail). These estimates can be used to con-
struct priors for the scale and shape parameters. As more baseline and operational biological effect studies are conducted and
environmental impacts are better understood, it will be possible to create informative priors. An informative prior is
expected to reduce the range of GPD parameter estimates, which will also decrease the range of return level credible inter-
vals. As a cautionary note, interpretation of MCMC analyses using informative priors should be conservative, as they may be
biased in favor of expert belief [35]. Informative priors could also be used to predict impact severity under different impact
expectations (e.g. tidal turbines will or will not impact fish behavior). Strategic Environmental Assessments have shown that
stakeholder groups (e.g. developers, regulators, and fishers) vary greatly in how they perceive MRE development’s effects on
the environment [49,50]. If in doubt, then non-informative priors will provide the most conservative, even though they will
result in the widest, credible intervals in return period prediction.

4.2. Statistical vs. biological significance

The goal of any monitoring is to detect whether a perturbation causes a significant change. Regulators typically set a
threshold for the amount of change that is acceptable. Determining this threshold is crucial as regulators may use the
amount of environmental change detected to evaluate the success of a project, trigger adaptive management, or terminate
the project earlier than scheduled [13]. The debate over how to quantify a biologically significant effect is ongoing [51-53].
Using an extreme value approach, one can set a threshold for extreme events based on statistical significance. A biologically
significant change does not necessarily correspond to statistical significance [12]. The choice of biological significance relies
on expert, and potentially subjective, judgment [53]. Consensus among stakeholders may be difficult to reach [49] and these
decisions should be made before monitoring begins [11], which, given the paucity of the data, is challenging in poorly
studied ecosystems.
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Statistical thresholds can be used as guidelines for regulators, and supplemented by return level plots to facilitate eval-
uations of the biological relevance of extreme events. One advantage of EVA in the debate on what constitutes a significant
impact is that extreme values are rare, but very detectable. The detectability of extremes is important in variable and ener-
getic environments. Detectability of extreme events coupled with the ability to set thresholds provides a starting point to
define an impact, compared to the uncertainty when establishing a biologically-based threshold. Knowledge of a study site’s
biology helps determine whether statistical thresholds identified by EVA are biologically relevant.
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